Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in
nitksam@gmail.com

Advanced Linear Algebra (MA 409)
 Problem Sheet - 27

Orthogonal Projections and the Spectral Theorem

1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
(a) All projections are self-adjoint.
(b) An orthogonal projection is uniquely determined by its range.
(c) Every self-adjoint operator is a linear combination of orthogonal projections.
(d) If T is a projection on W, then $T(x)$ is the vector in W that is closest to x.
(e) Every orthogonal projection is a unitary operator.
2. Let $V=\mathbb{R}^{2}, W=\operatorname{span}(\{(l, 2)\})$, and β be the standard ordered basis for V. Compute $[T]_{\beta}$, where T is the orthogonal projection of V on W. Do the same for $V=\mathbb{R}^{3}$ and $W=$ $\operatorname{span}(\{(1,0,1)\})$.
3. For each of the following matrices A :
a) $\left(\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right)$
b) $\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$
c) $\left(\begin{array}{cc}2 & 3-3 i \\ 3+3 i & 5\end{array}\right)$
d) $\left(\begin{array}{lll}0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0\end{array}\right)$
e) $\left(\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right)$
(a) Verify that L_{A} possesses a spectral decomposition.
(b) For each eigenvalue of L_{A}, explicitly define the orthogonal projection on the corresponding eigenspace.
(c) Verify your results using the spectral theorem.
4. Let W be a finite-dimensional subspace of an inner product space V. Show that if T is the orthogonal projection of V on W, then $I-T$ is the orthogonal projection of V on W^{\perp}.
5. Let T be a linear operator on a finite-dimensional inner product space V.
(a) If T is an orthogonal projection, prove that $\|T(x)\| \leq\|x\|$ for all $x \in V$. Give an example of a projection for which this inequality does not hold. What can be concluded about a projection for which the inequality is actually an equality for all $x \in V$?
(b) Suppose that T is a projection such that $\|T(x)\| \leq\|x\|$ for $x \in V$. Prove that T is an orthogonal projection.
6. Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a projection, then T is also an orthogonal projection.
7. Let T be a normal operator on a finite-dimensional complex inner product space V. Use the spectral decomposition $\lambda_{1} T_{1}+\lambda_{2} T_{2}+\cdots+\lambda_{k} T_{k}$ of T to prove the following results.
(a) If g is a polynomial, then

$$
g(T)=\sum_{i=1}^{k} g\left(\lambda_{i}\right) T_{i}
$$

(b) If $T^{n}=T_{0}$ for some n, then $T=T_{0}$.
(c) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with each T_{i}.
(d) There exists a normal operator U on V such that $U^{2}=T$.
(e) T is invertible if and only if $\lambda_{i} \neq 0$ for $1 \leq i \leq k$.
(f) T is a projection if and only if every eigenvalue of T is 1 or 0 .
(g) $T=-T^{*}$ if and only if every λ_{i} is an imaginary number.
8. We recall a Corollary of the spectral theorem that if $F=\mathbb{C}$, then T is normal iff $T^{*}=g(T)$ for some polynomial g. Use the Corollary to show that if T is a normal operator on a complex finite-dimensional inner product space and U is a linear operator that commutes with T, then U commutes with T^{*}.
9. Prove the following facts about a partial isometry U.
(a) $U^{*} U$ is an orthogonal projection on W.
(b) $U U^{*} U=U$.
10. Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional complex inner product space V such that $T U=U T$. Prove that there exists an orthonormal basis for V consisting of vectors that are eigenvectors of both T and U.

