sam.nitk.ac.in

nitksam@gmail.com

Advanced Linear Algebra (MA 409) Problem Sheet - 27

Orthogonal Projections and the Spectral Theorem

- 1. Label the following statements as true or false. Assume that the underlying inner product spaces are finite-dimensional.
 - (a) All projections are self-adjoint.
 - (b) An orthogonal projection is uniquely determined by its range.
 - (c) Every self-adjoint operator is a linear combination of orthogonal projections.
 - (d) If *T* is a projection on *W*, then T(x) is the vector in *W* that is closest to *x*.
 - (e) Every orthogonal projection is a unitary operator.
- 2. Let $V = \mathbb{R}^2$, $W = span(\{(l,2)\})$, and β be the standard ordered basis for V. Compute $[T]_{\beta}$, where T is the orthogonal projection of V on W. Do the same for $V = \mathbb{R}^3$ and $W = span(\{(1,0,1)\})$.
- 3. For each of the following matrices *A* :

a)
$$\begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

b) $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$
c) $\begin{pmatrix} 2 & 3-3i \\ 3+3i & 5 \end{pmatrix}$
d) $\begin{pmatrix} 0 & 2 & 2 \\ 2 & 0 & 2 \\ 2 & 2 & 0 \end{pmatrix}$
e) $\begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}$

- (a) Verify that L_A possesses a spectral decomposition.
- (b) For each eigenvalue of L_A , explicitly define the orthogonal projection on the corresponding eigenspace.
- (c) Verify your results using the spectral theorem.
- 4. Let *W* be a finite-dimensional subspace of an inner product space *V*. Show that if *T* is the orthogonal projection of *V* on *W*, then I T is the orthogonal projection of *V* on W^{\perp} .
- 5. Let *T* be a linear operator on a finite-dimensional inner product space *V*.
 - (a) If *T* is an orthogonal projection, prove that $||T(x)|| \le ||x||$ for all $x \in V$. Give an example of a projection for which this inequality does not hold. What can be concluded about a projection for which the inequality is actually an equality for all $x \in V$?
 - (b) Suppose that *T* is a projection such that $||T(x)|| \le ||x||$ for $x \in V$. Prove that *T* is an orthogonal projection.
- 6. Let *T* be a normal operator on a finite-dimensional inner product space. Prove that if *T* is a projection, then *T* is also an orthogonal projection.

- 7. Let *T* be a normal operator on a finite-dimensional complex inner product space *V*. Use the spectral decomposition $\lambda_1 T_1 + \lambda_2 T_2 + \cdots + \lambda_k T_k$ of *T* to prove the following results.
 - (a) If *g* is a polynomial, then

$$g(T) = \sum_{i=1}^{k} g(\lambda_i) T_i.$$

- (b) If $T^n = T_0$ for some *n*, then $T = T_0$.
- (c) Let *U* be a linear operator on *V*. Then *U* commutes with *T* if and only if *U* commutes with each T_i .
- (d) There exists a normal operator *U* on *V* such that $U^2 = T$.
- (e) *T* is invertible if and only if $\lambda_i \neq 0$ for $1 \leq i \leq k$.
- (f) *T* is a projection if and only if every eigenvalue of *T* is 1 or 0.
- (g) $T = -T^*$ if and only if every λ_i is an imaginary number.
- 8. We recall a Corollary of the spectral theorem that if $F = \mathbb{C}$, then *T* is normal iff $T^* = g(T)$ for some polynomial *g*. Use the Corollary to show that if *T* is a normal operator on a complex finite-dimensional inner product space and *U* is a linear operator that commutes with *T*, then *U* commutes with T^* .
- 9. Prove the following facts about a partial isometry *U*.
 - (a) U^*U is an orthogonal projection on *W*.
 - (b) $UU^*U = U$.
- 10. *Simultaneous diagonalization*. Let *U* and *T* be normal operators on a finite-dimensional complex inner product space *V* such that TU = UT. Prove that there exists an orthonormal basis for *V* consisting of vectors that are eigenvectors of both *T* and *U*.
