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Orthogonal Projections and the Spectral Theorem

1. Label the following statements as true or false. Assume that the underlying inner product
spaces are finite-dimensional.

(a) All projections are self-adjoint.

(b) An orthogonal projection is uniquely determined by its range.

(c) Every self-adjoint operator is a linear combination of orthogonal projections.

(d) If T is a projection on W, then T(x) is the vector in W that is closest to x.

(e) Every orthogonal projection is a unitary operator.

2. Let V = R2, W = span({(l, 2)}), and β be the standard ordered basis for V. Compute
[T]β, where T is the orthogonal projection of V on W. Do the same for V = R3 and W =
span({(1, 0, 1)}).

3. For each of the following matrices A :(
1 2
2 1

)
a)

(
0 1
1 0

)
b)

(
2 3− 3i

3 + 3i 5

)
c)0 2 2

2 0 2
2 2 0

d)

2 1 1
1 2 1
1 1 2

e)

(a) Verify that LA possesses a spectral decomposition.

(b) For each eigenvalue of LA, explicitly define the orthogonal projection on the corresponding
eigenspace.

(c) Verify your results using the spectral theorem.

4. Let W be a finite-dimensional subspace of an inner product space V. Show that if T is the
orthogonal projection of V on W, then I − T is the orthogonal projection of V on W⊥.

5. Let T be a linear operator on a finite-dimensional inner product space V.

(a) If T is an orthogonal projection, prove that ‖T(x)‖ ≤ ‖x‖ for all x ∈ V. Give an example
of a projection for which this inequality does not hold. What can be concluded about a
projection for which the inequality is actually an equality for all x ∈ V?

(b) Suppose that T is a projection such that ‖T(x)‖ ≤ ‖x‖ for x ∈ V. Prove that T is an
orthogonal projection.

6. Let T be a normal operator on a finite-dimensional inner product space. Prove that if T is a
projection, then T is also an orthogonal projection.



7. Let T be a normal operator on a finite-dimensional complex inner product space V. Use the
spectral decomposition λ1T1 + λ2T2 + · · ·+ λkTk of T to prove the following results.

(a) If g is a polynomial, then

g(T) =
k

∑
i=1

g(λi)Ti.

(b) If Tn = T0 for some n, then T = T0.

(c) Let U be a linear operator on V. Then U commutes with T if and only if U commutes with
each Ti.

(d) There exists a normal operator U on V such that U2 = T.

(e) T is invertible if and only if λi 6= 0 for 1 ≤ i ≤ k.

(f) T is a projection if and only if every eigenvalue of T is 1 or 0.

(g) T = −T∗ if and only if every λi is an imaginary number.

8. We recall a Corollary of the spectral theorem that if F = C, then T is normal iff T∗ = g(T)
for some polynomial g. Use the Corollary to show that if T is a normal operator on a complex
finite-dimensional inner product space and U is a linear operator that commutes with T, then
U commutes with T∗.

9. Prove the following facts about a partial isometry U.

(a) U∗U is an orthogonal projection on W.

(b) UU∗U = U.

10. Simultaneous diagonalization. Let U and T be normal operators on a finite-dimensional complex
inner product space V such that TU = UT. Prove that there exists an orthonormal basis for V
consisting of vectors that are eigenvectors of both T and U.
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